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EVA LUAT ION

The new general mathematical framework described in the report provides
a basis for e x t e n d i n g  many existing “digital ” di coding techni ques into
‘ mult iplicative ” decodi ng techn iq ues wh ich can be app lied directly to the
unquantized received word . Within the framework an optimal decoder was
formulated——optima l in the sense that it provides the minimum symbol error
rate possible from the received word. In practice , except for short
cod es , one almost always needs to back off from such a formulation to reduce
comp lex ity. Fortunatel y , at least in the(”addi tive ’ domain , extr eme re—
du-ctions in comp lex ity are often possible which do not significantly impact
performance. The preliminary results obtained indicate a similar trend
in the “multip li cative ” domain.

The significance of the results and some possibilities for future
app lication of the results are indicated in Section 5. Work during the
remainder of the effort will focus upon obtaining the tradeoffs among
perf ormance , decoding time and hardware complexity as indicated in Section
5.

The utilization of coding in various communication applications is
increas ing as de coding comp lexi ty decreases. The recent Troposcatter
In terleave r Contract F30602—74—C—0133 demonstrated the usefulness of
cod ing for  h igh speed tropo app lica tions. An on—going contractual effort
F30602—Th—C—036l titled , Demod/Decoder Integration indicates very significant
pe r f ormance gains are also a tt a inab le  on h igh speed microwave line—of—sight
channels. The res ilts to date under this effort provide a basis for extending
from hard decision decoders to decoders which utilize soft decisions. W h i l e
add itional devel’ ~en tal  work is req ui red , the results should be useful in
the eventual deveiopment of powerful practical decoders.

FREDERICK D . SC}LMANDT
Project  Engineer

(
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Section 1

INTRODUCTION

This report presents the most recent results of an inves-

tigation into the complexity of decoding error-correcting codes

and the development of efficient and practical decoding tech-

niques. For earlier results, the reader is referred to

Technical Report RADC-TR-74-297, “Decoding Complexity Study” ,

November 1974.

A major objective of this  continuing research is to demon-

strate that error-correcting codes are capable of providing

reliable data transmission in a wide range of applications at a

reasonable cost. We are convinced that the key to widespread

application of coding lies in understanding and exploiting the

laws that govern the trade—off between code performance and

decoder complexity.

It is intuitively clear that the complexity of decodina

increases ever more rapidly as the upper limit in performance is

approached . Because of the steep slope of the performance-

complexity curve as it approaches the performance limit , we are

quite willing to suffer a small reduction in performance for

the large reduction in complexity that should result. The pro-

blem is to make sure that the full reduction in complexity paid

for by the loss in performance is actually obtained .

A logical approach to this problem would be to determine

the optimum performance-complexity trade-off and then devise

1
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techn iques which approach or achieve th is  ideal.  U n f o r t u n a t e l y,

we do not yet have a Shannon-type resu l t  which tells us ,

quan t i t a t i ve ly ,  just  how well we can expect to do. However ,

this  does not prevent us from invoking general pr inciples  to de-

duce properties that a coding system would have to have in order

to occupy a position near the theoretical performance-complexity

curve. Consideration of such properties led to the formulation

of the fol lowing three heur is t ics :

Rule 1: Do not impose any restrictions on a code

beyond those necessary to obtain a g iven

decoding advantage .

Rule 2: Make sure that the decoder f u l l y utilizes

any restrictions that are placed on the code.

Rule 3: Do not impose any restrictions on the decoder

beyond those necessary to obtain a given

decoding advantage.

Application of Rule 1 to the class of finite-geometry codes

resulted in the development of several classes of generalized

finite—geometry codes which achieve significantly improved code

performance for the same decoding compiexityU3). Application

of Rule 2 to traditional majority decoding methods for cyclic

codes resulted in the discovery of a new decoding algorithm

which achieves the same code performance, but with a drastic

reduction in decoder complexity~
4 7

~. The research carried out

most recently was suggested by the application of Rule 3 to the

question of whether the performance lost by hard-decision2



demodulation is justified by the reduction in decoder complex-

(8—14)ity

In a digital communication system with one level of coding

(modulation-demodulation ) , it is natural to design the demod-

ulator to make hard 0-1 decisions in such a way that the

probabili ty of bit error is minimized . However , when a second

level of coding (error-control encoding-decoding) is added , this

demodulation strategy is no longer appropriate. In a commun i-

cation system using two—level coding , the transmitted bit stream

must satisf y known algebraic constraints. To make hard 0-1

decisions without regard to these constraints is to throw away

information and degrade the performance of the system. This

situation was tolerated for a time because it was thought that

the loss in performance at  the output of the demodulator was

jus t i f ied by the simplicity of the digital  decoder that followed .

This has come into question , however, and there have been many

proposals for reducing this performance loss through “soft”

demodulation followed by an “extended” decoder which has been

modified to take advantage of the additional information pro-

vided by the demodulator.

It is natural to assume that when soft demodulation followed

by an extended decoder is employed , the complexity of decoding

will increase significantly. This would mean that the

communication system designer would have to choose between two

alternatives: (1) accept the information loss inherent in hard

demodulation but use a powerful code and an efficient dig
ital3



algorithm to achieve a net performance gain , or (2) use a weak

code and/or an incomplete decoding algorithm , but achieve the

same net gain by eliminating the information loss at the output

of the demodulator. In the spirit of questioning all assump-

tions about the relationship between code performance and decod-

er complexity, we applied heuristic Rule 3 and asked ourselves

the following question : Does decoder complexity really increase

drastically if we remove the restriction that the decodor be

digital?

In the course of studying the previous approaches to soft-

decision decoding , we became aware of a curious fac t .  The two

best known techn iques , correlation decoding of block codes and

Viterbi decoding of convolutional codes, although almost always

used to decode linear codes, make no essential use of the linear

property . This seemed to us to be a violation of our heuristic

Rule 2 , so we concentrated on the question of how the algebraic

structure of a linear code might be exploited in soft-decision

decoding. Posing the question in this way resulted in a break-

through to a new area of coding theory which we are now

exploring . We have found that by using a new representation of

finite fields, classical digital decoding techniques can be

translated directly into soft-decision decoding algorithms.

This strongly supports the thesis that decoder complexity does

not increase drastically if we remove the restriction that the

decoder be digital. Furthermore, the properties of the new

algebraic framework allow consideration of new approaches to

4



decoding whi ch are inapp licable in the classical d igital domain.

Within this new mathema tical framework , in which fin ite—

f i e l d  algebra , combinator ics  and the theory of con t inuous

functions interact in a natural way, di gital decoding and analog

demodulation become special cases of a more general class of

decoding-demodulation functions. This means that the tradi-

tional approach of treating error-control coding as a digital

add-on to the inherently analog modulation-demodulation channel

may now be superseded by an integrated approach in which de-

modulation-decoding is viewed as a s ingle u n i f i e d  signal pro-

cessing function. We are sure that the abil ity to integrate the

decoding and demodulation functions will have great impact on

the design of f u tu re  high-performance communication systems.

In Section 2 , we discuss the new general algebraic frame-

work which provided the context for most of the work reported

herein. The major effort within this context has been the

development of analog threshold decoding algorithms and the

results of that effort are reported in Section 3. Section 4

presents some p re l imina ry  results  of a stud y of pa r i ty  check

set construction methods for weighted majority decoding of lin-

ear block codes. Conclusions and suggestions for further

research are contained in Section 5.

5



Section 2

ALGEBRAI C ANALOG CODING

The past twenty-five years has seen the growth of one of

the most elegant and esoteric branches of applied mathematics:

algebraic coding theory. Areas of mathematics previously

considered to be of the utmost purity have been applied to the

problem of constructing error-correcting codes and their

decoding algorithms (to the point where the very concept of

“pure mathemat ics~’ has become blurred~~~
5
~~). Yet in spite of

the impressive theoretical accomplishments , very little alge-

braic coding has be .~ ut into practice.

We believe that a major reson for this is that cominunica-

tion system designers tend to view algebraic coding as an overly

fancy dig ital add—on to an inherently analog modulation-

demodulation system , and that coding is more trouble than it is

worth. Anyone who has attempted to improve the performance of

an existing communication system by adding a level of error-

control coding can certainly sympathize with this feeling. It

is becoming increasingly clear that the best way to achieve

widespread acceptance of algebraic coding is to in tegrate it

with the modulation-demodulation system from the start.

That modulation-demodulation and encoding-decoding are

simply two aspects of the overall signal design - signal pro-

cessing problem is widely recognized now , and the des i rabi l ity

of a unified approach is apparent~
16> . The modulation-

6



demodulation and encoding-decoding systems cannot be designed

independentl y of one another without incurring a performance

loss. The major problem occurs at the receiving end of the

system when there is a mismatch between the demodulator and the

decoder. The solution , clearly, is to merge the demodulation

and decoding functions and design an optimum integrated decoder-

demodulator. But here we run into an apples-and—oranges

mathematical modelling problem .

Consider the familiar situation in which a code word of an

(n ,k) linear binary error-correcting code is transmitted over a

time-discrete memoryless channel. We may consider the channel

to be a device which adds, as vectors of real numbers , an

error vector to the modulator ’s representation of the code word.

The code word was selected from one algebraic domain , the

n—dimensional vector space over the finite field GF(2), and

the error vector from another algebraic domain , the n-dimensional

vector space over the real numbers R. An apple has been added

to an orange. This poses a difficult problem at the receiver :

In what domain do we process the word received at the output of

the channel?

One approach is to force the error vector into the alge-

braic domain of the code by hard-decision demodulation. The

quantized error-vector may then be viewed as a 0-1 vector which

has been added , modulo 2, to the transmitted 0-1 code word , and

all of the techniques of finite-field algebra , number theory

and combinatorjcs may be employed in the design of the decoder.

7



We might call this the digital decoding approach. Virtually all

of classical  al gebraic coding theory is predicated on this model.

But as pointed out above, this approach is unsatisfactory from a

practical point of view because of the information loss at the

interface between the hard-decision demodulator and the digital

decoder.

An alternative approach , which we might call probabilistic

decoding , is to treat the code word as if it came from the

algebraic domain of the error vector . In this case , the algebra-

ic properties of the code (linearity , number-theoretic propert-

ies , etc.) are simply ignored . The signal processing is done

entirely in the error vector domain. Two well-known examples of

this approach are correlation decoding of block codes and

Viterbi decoding
U7) 

of convolutional codes. Both methods are

normally used to decode linear codes, but neither method makes

any essential use of the linear property. This approach is

satisfactory only for low rate or short codes.

A third approach is to attempt to exploit both algebraic

domains by combining digital and probabilistic decoding .

Examples of such hybrid decoding schemes are: Wagner decoding~~
8
~~,

generalized-minimum—distance decoding U9), weighted-erasure

decoding~
20
~ and decoding with channel-measurement information~

2
~~~

Although these schemes show improvement over strictly digital or

s t r i c t ly  probabilistic decoding in many instances, one gets the

impression that the apples—and-oranges problem remains unresolved .

As a result of surveying the existing decoding techniques ,

8



it occurred to us to ask whether anything could be done about

the apparent  i ncompa t ib i l i t y  between these two al gebraic do-

mains. Clearly, nothing can be done about Mother Nature ’s error

vector domain , but what about the man-made algebraic domain of

the code? This l ine  of inqui ry  led to the discovery of a more

general al gebraic domain in which the analog error vector and

the digital code word co-exist in a natural way. This is

achieved through the use of a new representation of finite

fields which we will now describe . For simplicity, we restrict

our discussion to fields of prime order. The extension to fields

of prime-power order is straightforward .

The f i n i t e  f ie ld  of p elements , GF (p) , is usual ly represent-

ed by the ring of integers mod p. We will call this the

“ additive representation” of G F ( p )  and denote it by

S = <S , •, @> where S = {0 ,l , . .  . ,p—l}, and “s” and “0” are

modulo p addition and multiplication. The new representation of

GF( p ) ,  which we call the “ mult ipl icat ive representation” , wil l

be denoted by S’ = <S’ , ~~, *>  where S’ = {l , c~, ~~~~~~~~~~~~~~ is

the set of complex ~th 
roots of unity , “ . “ is ordinary multipli-

cation of complex numbers , and “
*

“ is a new operation defined by
log u

u * v = v  t

where the principal value of the logarithm is taken. To show

that S’ is indeed a representation of GF(p) , it is necessary

onl y to establish the existence of an isomorph~ sm from S to S’ .

Thus let f be any function from S to the complex numbers C such

that  for al l  i t S, f(i) = cz~~~. It is easy to verify that f is

9



such an isomorphism.

The important point is tha t the operations “ . “ and “ * “  of

the m u l t i p l icat ive representat ion of G F ( p )  are def ined for all

nonzero elements of C, not just the ~th roots of unity) We

have thus constructed a general algebraic system <C , +, •, *>

which contains the mul t i p l icative representation of G F ( p ) .

Every algebraic equation that can be written in the classical

S-domain can be translated directly into an equivalent equation

in the S’ -domain. But once in the S’ -domain , the algebraic

equation extend s immediately to non-dig ital arguments ( i . e .

arguments which are not restricted to be ~th roots of uni ty) .

This will be discussed in the next section , but we can give

a simple explanation here. In conventional digital decoding of a

linear (n,k) code, a parity check is defined by

n
S
i ~ h .. r. (mod p)

j =l ~ J

where Cr 11.. .,r ) is the received word and (h.1 ,. . . ,h . )  is a
word in the dual code. If is assumed here that r~ c S, for, if

not, the algebraic operations are not defined . The corresponding

equation in the 5’ domain is

n n h .
= n h’ .*r ’ = n r ’ ~~

~ j=l ‘~~ -~ j=l ~

‘There is a technical difficulty with the definition of Z’~
when we allow Z to be complex if we require that all of the
usual laws of exponents hold (which in our development we do
not . For a discussion of this point , see A. M. Gleason,
“Fundamentals of Abstract Analysis ,” pp. 324-326 , Addison-
Wesley 1966.

10
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(where h ! .  = 
h1~ etc.). If the r~ are ~

th roots of u n i t y ,

then there is nothing new. But the r ’ need not be so restricted .

The . lgebraic operat ions are s t i l l  def ined  when the r ’ are any

nonzero complex numbers. This means tha t any conventional

“additive ” digital decoder can be translated into a correspond-

ing “ mu l t ip l ica tive ” decoder and then app l ied di rect ly  to the

raw , unquant ized received word. The quest ion , of co’irse , is:

how well does this work? As will be seen in the next section ,

it ca n wor k su rp r isingly  well , but we know fa r too l i t t l e  at

this time to make any more specific statements. We are in the

somewhat er~barrassing position of having a variety of new

demodulation-decoding techniques which work remarkabl y well ,

but which we understand only marginally. We are currently

investigating such problems as in terpre t ing the meaning of the

syndrome when the di g i ta l  restrict ion is removed , and determin-

ing how many “ mu l t i p l i ca t ive” pa r i ty  checks a re r equi r ed to

specify a code in this more general domain . We are studying

the interaction of probabilistic , algebraic and combinatorial

mechanisms in an effort to find the proper viewpoint from which

to make sense of it all. To date , the best insights have come

through the use of abstract harmonic analysis (group characters ,

finite Fourier transforms , etc.). At this point we know that

all of classical algebraic coding theory can be t ransla ted

from the addit ive domain into the mul t ip l i ca t ive  domain , and

th a t  once in t h i s  new domain a bewildering number of analog

11



processing extensions become possible. The extension which we

are exploring currently is discussed in Section 3.

12



Section 3

ANALOG THRESHOLD DECODING

3.1 Introduction

M a j o r i t y  log ic decoding and the more general threshold

decod in g cons t i tute w idel y studied areas of algebraic cod ing

theory~
4 7 ’22 40

~ . M a j o r i t y  decoding usuall y takes the form of

a symbol-by-symbo l decoding al gori thm for l inear  block or

convolutional codes. Most majority algorithms make strong use

of both the linearity of the code and any special combinatorial

structure the code may have. Because of the pr incipa l investi-

gators ’ familiarity with the area, majority decoding was the

f i r s t  technique to be translated into the mul t ip l ica t ive  domain

and extended to analog processing of the unquantized received

word. (Actually, the discovery of the mul t i plicative extension

of majority decoding~
6’8~ predate~ the discovery of the general

multip licative algebraic domain.) Following Massey~
29
~~, we

call this extended decoding method “analog threshold decoding ” .

In the previous section , we pointed out that any function f

which , for all i ~ S, maps i -. is an isomorphism from S, the

additive representation of GF(p), to S’, the multip licative

representation of GF(p). One way to convert an additive dig ital

decoder to a multiplicative analog decoder is to phy~ ica11y

implement the function f and apply it to the output of the

channel. Our first experiment along thes~ lines involved a

majority decoder for a linear binary block code transmitted

13



over a time-discrete men~ory1ess channel. The initial choice

for the isomorphism f was f(x) = cos ~x. (In the binary case ,

—1 , S = (0 ,1) and S’ = (1 ,— ifl .

In conventional one-step majority decoding , the unquan tized

received word (r1 1 .. .,r )  is converted to a 0-1 vector

(u
1
,. . .,u~ ) by hard-decision demodulation , various rnodulo 2

parity check sums involving the {u .~ are computed and an estimate

of c . , the ~th t ransmit ted  code di git , is obta in ed by m a j o r i t y

decision on these sums. In analog threshold decoding , the

re~eived word Cr ,...,r ) is converted to a real—valued vector1 n

(coslT r1
,.. .,cos~r ) ,  the corresponding parity check products

involving the {c o s w r . }  are computed , and the estimate of c .  is

obtained by thresholding on the sum of these products.

The reader right well ask at this point why anyone would

choose the function cosiT to be the isomorphism from S to S’ .

A periodic “soft-decision” demodulation function hardly makes

sense from a communication system designer ’s point of view .

The reasons for this choice are of historical interest only and

it is certainly true that cosii would never be used in practice.

However , it is also true that cos~ works surprising ly well , and

that it is a convenient function to work with from a

theoretician ’s point of view (i.e.. theorems can be proved).

In order to talk about the performance of an analog

threshold decoder , we have to define error-correcting

capability over the real numbers R. The natural distance

measure over R~ is the Eucli’ jan metric , a;i& it is easi]y

14



I
v e r i f ~ ed tha t a b i n a r y  (n , k )  code wi th  minimum Hamming

distance dH has minimum Euclidean distance dE 
= /~~~~~. We say

tha t  a decoding func t ion  is a nearest-neighbor decoding rule

if i t  maps a received vector onto a nearest word in the code,

and a radius-r decoding rule if it maps a received vector onto

a nearest word in the codo whenever the vector is within

Euclidean distance r of a code word . The maximum radius possible
d

without having overlapping spheres is r = 4, and a decoding

function which achieves this radius is called a maximum-radius

decoding rule. (Note the obvious analogy with t—error-correction

in digital  decoding.)

Using the demodulation function cos~ , we were able to prove

the following results for linear binary block codes~
8
~~. First ,

a one-step orthogalizable code of minimum H amming distance

dH can be maximum-likelihood decoded by a one-step analog

threshold decoder using at most dH parity check products.

Second , a Hamming code of length n = 2m_1 can be maximum—radius

decoded using 2m 1  products. Finally, any L-step orthogonaliz-

able code with minimum Hamming distance dH can be maximum-

radius decoded by a sequential code reduction decoder~
4
~ whose

first stage is an analog threshold decoder using dH products

and whose remaining stages are digital , provided that the

subcodes used in decoding are all capable of correcting dH~
l or

fewer digita l error s (which is almost always the case). We

also showed that maximum-radius decoding - however achieved -
is asymptotically optimum for the white Gaussian channel. More

15



recently ,  we have been able to extend our earlier results and

show that whenever it is possible to find a set of R parity

checks which all check the ~th position , but no more than A

of which check any other position , then a one-step analog

threshold decoder will do radius-r decoding with r =

(For orthogonalizable codes, R = dH~
l and

r = ~.iç =

Since f = cosiT was clearly not an optimum choice, we ex-

perimented with other functions in an effort to understand what

makes a good demodulation function . We ran computer simulations

for the white Gaussian charnel using a variety of functions -

including cos~ - with inconclusive results. The analog threshold

decoders consistently outperformed the corresponding digital

majority decoders, but a particular function would be better for

one code than for another , or would perform better at one signal-

to-noise ratio (SNR) than at another. It was not until we began

to consider the possibility of adaptive analog threshold de-

coding that the optimum function was found .

In the case of a linear binary (n,k) code, the optimum

soft-decision function (optimum in the sense that the probability

of bit error is minimized over any time-discrete memoryless

ch~.tnne1 when the code words are equiprobable) is

f(x) — 
l—~~(x)— 

1+~~(x)

where •(x) = Pr (xll)/Pr(xJO) is the likelihood ratio. This

function is optimum when Cl ) all parity check products are

used and (2) the products are weighted equally. We have been

16



able to generalize this result to any linear block or convo—

(13)lutional code over GF(q)

The reader may have noticed that the function f(x) as given

is not an isomorphism from S to S’ . We could easily make it so

by normalizing , but then the weights assigned to the parity

products would become func t ions  of the SNR. When the func t ion  as

given is used, the contributions of the various parity products

are automatically scaled according to their reliability at the

SNR on the channel. At high SNR , the 2n k  parity products

contribute more-or-less equally, while at low SNR the only

signiiicant contributions are from parity products which corres-

pond to minimum weight words in the dual code . It is interesting

to note that for the white Gaussian channel , the optimum function

approaches a [-1 ,4-1] step function as SNR -
~ = . Analog threshold

decoding would be mathematically equivalent to digital majority

decoding if the step function were actually used . This

illustrates very nicely the fact that digital decoding is a

special limiting case of this more general class of decoding -

demodulation functions.

The discovery of the optimum soft-decision symbol-by-symbol

analog threshold decoding algorith~n is significant because the

complexity of the al gor i thm var ies  wi th  the size of the dua l

code and is thus inversely related to code rate. This decoding

method therefore is to high-rate codes what correlation and

Viterbi decoding are to low rate codes, which fills an important

gap in the arsenal of decoding techniques. But even more

17



significant , perhaps, is the concept of soft—decision decoding

in the dual code domain itself. In classical code domain de-

coding, there is no graceful way to give up a small amount of

performance in order to reduce the complexity of the decoder.

For example , one cannot discard half of the matched filters in a

correlation receiver , or half of the microcomputers in a Viterbi

decoder . The effect on performance would be disastrous. This

is not so in the case of dual code domain decoding . If we were

to throw away, at random , half of the parity check products in

an optimum analog threshold decoder , we would not expect a

significant loss in performance. The reason for this is that

the dua l code domain expansion of the decoding function is

essentially a Fourier series , and even a fairly severe truncation

of the series should result in no more than a small overall de-

gradation of performance, the loss being independent of the code

word transmitted . To support this view, we cite the results of

some very recent simulations carried out by CNR , Inc . (41) for

the (21,11) code on the white Gaussian channel . Reducing the

number of parity products from 1024 to 6 resulted in a loss of

less than 1 db at the bit error rate of 2 x

Much remains to be done in this area , particularly on the

problem of suboptimum analog threshold decoding. We still do

not know what the optimum demodulation function is when a

proper subset of the available parity checks is used , or even if

the optimum function can be factored into an adaptive part ,

which is a function of the SNR , and a fixed part which is a

18



function of the set of parity check products to be used . How-

ever , the preliminary findings are certainl y encouraging and we

expect that this line of investigation will continue to produce

results ~ f theoretical and practical importance.

We now present, in detail , the new optimum symbol-by-symbol

decoding rule for linear codes.

3.2 The Optimum Decoding Rule

For convenience , we present the decoding rule for linear

block codes. The extension to convolutional codes is immediate

and will be obvious from the examples.

Let C = (c 01c 1,...,c l~ 
denote any code word of an (n,k)

linear block code C over GF(p) and c~ (c~ ,c ’ ,.. . ,c ’ ) the
jO j i j , n— 1

jth code word of the (n,n—k) dual code C’ . A code word c is

transmitted over a time—discrete memoryless channel with output

alphabet B. The received word is denoted by r = (r01 r1,...,r 1),

r~ £ B. The decoding problem is: given r , compute an estimate

Cm of the transmitted code symbo l Cm in such a way that  the

probability that a equals Cm is m a x i m i z e d . Other nota t ion :

Ui exp[2r/T/pJ (primitive complex pth root of unity) ;

6. . = 1 if i = j and 0 otherwise; Pr(x) is the probability of x

and P r ( x l y )  is the probability of x given y. Unless otherwise

stated , the elements of GF (p) are taken to be the integers

0,1,... ‘p—1 and all arithmetic operations are performed in the

field of complex numbers.
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DECODING RULE :

Set C s , where s ~ GF(p) maximizes

the expression

p—l 
— ~ 

r
n—k 
[n—l p—i —i(c~ ,~—t ó

A (s) = w S y y ~ 
j~ m Pr(r~~ i) . (1)m 

~~~~~ j=l [ ~=0 i=O
Theorem: Decoding Rule (1) maximizes the probability that

C = C .m m

(Proof) We must show that choosing s to maximize A
m
(S) is

equivalent to max imizing the probability that cm equals s given

the received word ~~~ . We do this directly by showing that

Pr(cm 
= sir) = AAm (S)~ 

where A is a positive constant which is

independent of s. We first note that

Pr(c =sjr) = Pr ( c~~r )
ccC ,c =s
-

~ m

= Pr(ric) [Pr(c)/PrCr)] . (2)
ccC ,C 5

Since the code words of C are equiprohable , Pr(c) = ~-k and

(2) becomes

P r ( c s l r )  = [~~ k/~~~~ )] 
~ 

I
~r (E~~~ 6 o (ce —s) ’ (3)

ccC ‘~~ - -in

where = 

~
6m0 ’6ml ’~~

”’6m ,(n—l)~ 
is the vector with 1 in

the mth position and 0 elsewhere. In terms of their finite

Fourier transforms,
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—i p-1 t(c e —s)
= 

U, 
(4)

t= 0

— n u •cp (r ~~c) = p F(r ,u)w-~ (5)
~~~~~~

n

where

F ( r , u) = 
~ 

Pr (r1v)w~~~
” (6)

v rVn

U = (u
0
,u~ ,. 1~U~~~~~) and v = (v 0 ,v1, . . .  ,v 1) any elements of

V , the vector space of all n-tuples over GF(p). Substitutingn

(4) and (5) in (3) yields

-n-k-iPr ( c m= s l r ) = [ p  / P r ( r ) 1  Y r 
~ 

F u.cl
crC I ur V 

(r , u ) w ~ HL~ ~rp—]. t ( c~e
I~~~~~~~

”m
[t=o j

(u+te )c
-n—k—i —St 

• ] .  (7)=[p /Pr(r)] ~~ w ~

‘ F(r ,u) 
~ 

w
t=0 ucV I crCn

By the orthogonal,ity properties of group characters , we know

that
1 kp if yEC ’

V .1= (8)
ccc I 0 otherwise

Applying (8) to (7) gives 
n—kp-i 

~~
p-n-i ‘, —sPr(c =sir)=[p /Pr(rfl ~ w )

~ 
F(r ,c~ —te ) . (9)

j=l

Since the channel is memoryless, we may write (6) as
n — i  ~ u~ v ç, n -l  p-i -iu

F ( r , u )  = IT Pr (r~~jv~ )u = 11 ~ Pr(i~~Ii) Ui . (10)
vcv 2 0  2 0  i 0n
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Substituting (10) in (9) yields

- -l p-1 
- ~ 

r
n—k 

rn-l p-i -i(c~ Q -tO Q )
Pr(cm slr)= [p ~ /Pr(~~)) ~ 

CA) II 
~~ 

(A) 
-

t=0 j = i  L~~° 
i=0

Pr(r~~Ii)j = [p 
n_l

,prCr )IA Cs) . Q.E.D.

As one might expect, the decoding rule takes a comparative-

ly simple form in the binary case: set c = 0 if

A (O) > A (i) and C = 1 otherwise . It is more convenient how-

ever to state the rule in terms of the likelihood ratio

= Pr(r Il)/Pr(r IO).

Substituting (1) into the inequality Am (O) > Am (l) yields

~ 2n—k n—i 1 —i(c~ —tó
11 

~ 
(—1) j~ mR. P r (r ~~I i )  >

tz0 j l  Q 0  i 0

1 2n k  n—l 1 — iCc ’ —tO
(_1) t 

~ fl 
~

‘ (—1) J Q~ m9~. Pr(rt.Ii)t =o j=l 9~=0 i=0

or
n-k
2 n— I i —c ’ — 6

~ IT Pr(r~~l0)+(—l) ~~ 
m
~pr (rZ ,l) > 0 . (11)

j=l ~~~ L
n- 1

Dividinq both sides of (11) by II PrCrjO ) and using the
~~= 0d e f i n i t i o n  of the likelihood ratio , we have

n—i r —~~~~ — o 1
4i t~o L 

l+
~
$C t (l) j ~‘ 0 . (12)

Then dividing both sides of (12) by the positive quantity

n-i
II 1+*t
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2 n — k  n— i  l+~ (—1) 3~
Ti > 0

j=l Q=0

Fina l ly ,  u s i n g  the iden t i ty

jQ mc. 
~~~~~~~~~~ 

C .Q~~6~~~

— 
l+4

~z ~~~~~~~~~

where ‘
~~~~~

‘ denotes moduio 2 addition , we obtain the

BINARY DECODING RULE :

Set C = 0 ifm
c’ •o

n—i  l~~C j 2 m2~
y ri i+qC > 0 (13)

j=l ~=0 2.

and & = 1 otherwise .m

We remark that up to this point we have ignored the

question of how one retrieves the decoded information symbols

from the code word estimate c. This could be a problem because,

when a symbol-by-symbol decoding rule is used , C is not in

general a code word. In the case of block codes, we could in-

sist that the code be systematic without loss of generality,

but there might be some objection to this restriction in the

case of convolutional codes. As it turns out, this is not a

problem since the decod ing rule i~ easily modified to produce

estimates of the information symbols directly if need be.

Simply note that every information symbol am can be expressed as

a linear combination, over GF(p), of code words symbols Cm~
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i .e .  am 
= ~ b 2.C 2. ,  b 2. ~ G F ( p ) , and tha t the proo f of the theorem

Q

goes th roug h in tac t  if we s u b s t i t u t e  ~b c , for  c and b for
2. rn m m~.

~ in (1).
m

EXAMPLES:

(a) (7,4) H amrning~ code

We will illustrate the decoding rule for the received

symbol r0
. Since the (7,4) code is cyclic , r

1
,...,r

6 
may be

decoded simply by cyclically permuting the received word r in

the buffer store.

The Binary Decoding Rule (13) in this case becomes
c~ •58 6 i—q ~~ 

0
= 0 iff ~ 1+ 

2. 
> 0 . (14)

j=l 2.=0 ~2.

The parity check matrix H of the (7,4) code and its row space

C’ are shown below.

1 i 1 0 1 0 0 (a) c
0 
c~ c2 c3 c4 c5 c6

H =  0 1 1 1 0 1 0  (b) 0 0 0 0 0 0 0

0 0 1 1 1 0 1  (c) 1 1 1 0 1 0 0 (a)

C’ : 0 1 1 1 0 1 0 (b) (15)

1 0 0 1 1 1 0 (a~b)

0 0 1 1 1 0 1 Cc)

1 1 0 1 0 0 1 (a~c)

0 1 0 0 1 1 1 (b c)

1 0 1 0 0 1 1 ~ (a~b c )

Let = (l—q ~~)/(i+~ 2.). Then substituting (15) into (14) gives

24



c0 = 0 iff ‘0 + 1 2 4  + 2 5 6  + 1 3 6  + 3 4 5  
+ 

(16)
+ ~~0~~ 1

A
2

P
3

C
5 

+ + p0
p1p4 p 5 p 6 > 0

The decoder configuration corresponding to (16) is shown in

Figure 1.

The reader will probably recognize the similarity between

the decoder of Figure 1 and a one-step majority decoder using

non—orthogonal parity checks(3U . And in fact if the “soft

decision ” funct ion  (l-~~( x ) ) / ( l + q ( x ) )  were rep laced by the “hard

decision ” function f(x) = -l if x > ~~
- and ÷1 otherwise, and if

the last three parity checks in the decoder were deleted , then

the resulting circuit would be mathematically equivalent to a

conventiona l one-step majority decoder . Parity checks in the

circuit of Figure 1 would be computed by taking products of +1’s

and -l’s, rather than by taking moduio 2 sums of 0’s and l’s

as would be the case in a conventional digital decoding circuit.

(b) (4,3,3) convolutional code

We now illustrate the decoding rule for the received symbol

r0 using an (n0
,k0,m) = (4,3,3) convolutional code (from

(42)Peterson and Weldon , page 395) .

The Binary Decoding Rule (13) in this case becomes

c ’~~~5
-‘ 

l—4C 9 
J’ 0A ~

c0 
= 0 iff ~ 11 

~~~ 
-
‘ 0 . (17)

j=1 2.=0

Of course , there are only a finite number of nonzero terms in

(17), the number depending upon the length of the transmitted

code sequence. The initial portions of the parity check matrix

H of the (4,3,3) code and its row space C’ are shown below.
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1 1 1 1 0 ... (a)

H =  1 0 1 0 1 1 1 1 0 . . .  (b)

l l O O l O l O l l l l O . . .  ( c )

0...

1 1 1 1 0 . . . (a)

1 0 1 0 1 1 1 1 0 ... (b)

0 1 0 1 1 1 1 1 0 . . .  (a~b)

C’ : 1 1 0 0 1 0 1 0 1 1 1 1 0 ... (c) (18)

O O l i i O i Ol l l i O . . .  (a~ c)

0 1 1 0 0 1 0 1 1 11 1 0 . . .  (b c)

1 0 0 1 0 1 0 1 11 1 1 0 . . .  (a~bSc)

As before , let = (1_ctC 9)/ (l~f~q 2.). Then substituting (18) into

(17) gives

C0 
= 0 iff + + p 2 p 4 p 5p 6 p 7 +

+ p 0 p1p 3 p 4 p 5 p 6 p 7 + .. . > 0 . (19)

The decoding diagram corresponding to (19’ is shown in Figure 2.

This takes the form of a trellis diagram for the (4,1,3) dual

code C’ with the c 0 positions in the branch labels complemented .

(In general, to decode rm the c~m pos
itions would be comple-

mented.) Note that the all-zero state acts as the accumulator

for the terms of (19).
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Since a different storage unit must be used for each

symbo l to be decoded , the amount of stor age f or this type of

decoder grows linearly with the length of the transmitted code

sequence. This  is also t rue  of a Vi terb i  decoder , which must

keep track of its path—elimination decisions.

We now restrict our attention to linear binary block codes

with equiprobable code words transmitted over the additive white

Gaussian noise channel by antipodal signalling and present

asymptotic expressions for  the probabi l i ty  of bit  error ,

for both high and low SNR.

3.3 Asymptotic Results for the WGNC

thThe optimum bit-by-bit decoding rule for the m digit of

an (n,k) linear binary block code C is: set c = s, where

s c GF(2) maximizes P(c = sir ) . Here c = (c01...,c 
~ 

is the

transmitted code word , r = (r 0,... ,r 1) is the received word ,

and C is the decoder ’s estimate of the transmitted code digit

C
m • The probability of bit error is then given by

~BIT = 1
~~~~ m 

= cm jr) 
~~
. 

~~~~ ~ 
c jr)]

The derivation of our results is simplified by assuming that the

ail-0 code word is transmitted . It is easily seen that the

assumption is valid for the case under consideration because of

the group property of the code, which renders the view of n-

space from one code word the same as from another , and because

of the symmetry of the noise , from which it follows that noise

vector e = Ce01... ,e 1) occurs when c = (C 0 1. . .  ,c 1
) is trans-
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mitted with the same probability that e ’ = (-1 0
e0,. ..,_ l

Cn_l
ef lj )

occurs when the ali—0 code word word is transmitted .

When the ali-0 code word is transmitted , the mt~ component

of the received word is

r = v ’E + em m

where E is the signal energy per channel bit and em is a noise

sample of a Gaus sia n process wi th  single-sided noise power per

her tz  N . The variance of e is N /2 and the SNR for this
0 m 0

channel is y = E/N0. In order to account for the redundancy in

codes of differen t rates , we will use the SNR per transmitted

bit of information , 
~b 

= E
b/NO yn/k = y/R, in our derivations.

In terms of 
~b ’ 

we can write the likelihood ratio as

(r ÷~/~)2 (r
= exp(- ~ )/exp (- ~

0 0

= exp(_4r
m

I/y/No) 
e x p (_ 4 r m Vkyb/N O

) . (1)

The rnth component of the receive word r will be decoded

incorrectly if and only if

P(c = 0!r) P(C = lir)

where r = ( I~ + e0 , . . . , /~ + en i ). In other words,

~BIT 
= 

~ 
P(cjr) 

~ 
P( r)) , (2)

ccS0 
CL S 1

where S. = {c E C IC  = i}, ~ = 0,1. Since the channel is memory-

less , and the code words are equiprobable (so that we may invoke

Bayes ’ formula), (2) may be written as
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n-i n—I

~BIT = Ti P ( r  c )  < II P(r 2.Ic 2.)] . (3)
c’S 0 

Q 0  ~ cCS 1 
Q 0

n-i
Since Ti P(r jO) > 0, we can rewrite (3) in terms of the like-

iihood ratio as

n—i n-i

~BIT 
= P[ 

~

‘ 11 ~(r~ ) < fl ~‘(r ,) I . (4)
ccS

0 
2 0  c=O

Substituting (1) into (4) yields

~BIT 
= Pt V exp(-r.c 4~~~bTNo ) < ~ exp(-r~c 4/ /N0

)). (5)
c~ S

We now fix N0 
and vary Eb 

to obtain the asymptotic behavior of

~BIT 
as 

~b 
decreases (denoted by 

~~~~~~~ ~~~~~~ 
and as increases

(denoted by A.B.

Low SNR Case

For x small , exp x 1 + x , so for  in a small

neighborhood of zero we may write (5) as

A .B.(PBIT
) P1 ~

‘ (l-r.c 4/Ryb/No
) )

~ 
(l-r~c 4~

’
~~~b

/N
o
)I . (6)

b ° CES Q 
c~-S 1

By [42 , problem 3 .5 1,  (6) can then be written as

A.B. t
~ BIT~ 

Pt ~ —r •c 4/Ryb/NO 
< -r•c 4/Ry~ /N~ ]

Y -‘0 ciS ceS “

which implies that

A.B. 
~~BIT~ 

P[ 
~ 

r~c ~ r•c) . (7 )
ciS0 ccS1
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S
0 

is a linear binary (n,k-i) code, so if the vectors of S~ are

arranged as rows of a matrix M0
, then each column will contain

k—2 , k—2all 0’s or else 2 0 s and 2 1 s. Then if we ar r ange , as

rows of a matrix M1, the vectors of set S1, the columns of

which correspond to ali-0 columns of must contain all l’ s,

and all other columns of M
1 

wil l  contai n 2k-2 0’ s and 2k-2 l ’ s.

Using this fact , we can write (7) as
j o

A.B. 
~~BIT~ 

P~ Y r 9 < 0]
9 j

1

where j1,. . .,j~ are the columns of M0 which contain a l l  0 ’s.

Since r
2. 

is a normally distributed random variable with mean

V~ and variance N 0/2 , and since the noise is white ,

J i )  
______

P[ 
~

‘ r < 0] = —f -— J exp(-x2/2)dx = Q ( / 2 O Ry
2n /2eRy b

The desi red asymptotic expression for  low SNR is thus

A . B .  
~~BIT~ 

Q ( v ’2eP.yb )

We note that if C is the binary (n,i) code, then R = 1/n ,

= n and

A.B. 
~~BIT~ ~~~~~~~~

which is the probability of bit error when no coding is used .

Also, we note that if the dual code of C has minimum Hamming

distance greater than 2, then €3 = 1 and

A.B. 
~~BIT~ ~~~~
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which is the probability of bit error before decoding .

Hi gh SNR case

Since the all-0 code word is a member of

~ exp(—r .c 4/RYb/NQ
) > 1

C

in (5). In the case r~c > 0 for all c c S1,

Y exp(-.r.c 4/RYb/No) 0
~ cS

i

for large values of 
~~~ 

Thus A.B. 
~~BIT~ 

is upper bounded by
b

A.B. 
~~BIT~ — ~~ U ~ •c 0] < ~

‘ P ( r c < 0)
gcS 1

We now show that this upper bound is tight for sufficiently

large values of “b’ i.e.

A .B. 
~~BIT~ ~ Y P(r~c < 0)

~~
S1

Let and 
~2 

be two code words of C. First note that

= 

~~~~ 
+ /~w ( c

1
) and £

~~~2 
= 

~~22 
+ v’Ew(c2), where w(c) is

the Hamming weight of g. Without loss of generality, we assume

that w (ç1) ~ w(g2). Let be the solution to the problem of

minimizing ~~~ subject to the constraints + .~~w ( q 1
) < 0

and Q.C
2 

+ /~w(c2) < 0, and let 
~2 

be the solution to the pro-

blem of minimizing ~.e subject to e~c1 + i/~w(c1) < 0. It is

easy to show that 
~l~~ 1 

- 

~2~~ 2 
= Ez , z > 0, from which it

follows that for sufficiently large values of E(and thus

P(r.c1 < 0) >> P(r.c
1 

< 0, r.c2 
< 0) . (8)
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But then

P[ U < 0] )‘ P(r~c < 0)
CES

1 
cCS1

since , w i t h  high probability , onl y one of the inner products

r~c will make a significant contribution . Again by (8), we may

conclude that  for sufficiently large values of

A .B. 
~~BIT~ ~‘( U ~~~ < 0)

1b 
CCS 1

Thus

A.B. 
~~BIT~ 

Y P(r’.c < 0)

Now we know that 
=

P(r•c < 0) = ,4~ J exp(-x2/2)dx = Q(f2Rw(c)Yb)

from which it follows that

A .B. 
~~BIT

1 
~ 

Q(/2Rw(c)Yb
)

1b 
ceS1

Let Wm be the minimum weight of code words in S1 and N(Wm) the

number of code words of weight wm . Since only these code words

make a s ign i f ican t  contribution to the sum , the desi red asympto-

tic expression for high SNR is seen to be

A.B. 
~~BIT~ 

= N(w ) Q(s/2RW Yb
)

b

If the code is cyclic with minimum distance d , then W = d

and

~~~~~~~~ 

U’BIT) N (d) Q(/2Rdyb)

b
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Section 4

PARITY CHECK SET CONSTRUCTIONS

It is ~~~~~~~~~ tha t any di g i tal  decoding funct ion  for  a

linear binary code can be realized as a weighted majority of

nonorthogonal parity checks. An open question of practical

interest is: For an (n ,k) linear block code, how do we find a

n-ksmall subset of the 2 available parity checks that is capable

of correctly decoding the first received bit in spite of any

pattern of t or fewer errors? In this note we present two

approaches to constructing such subsets. The first approach ,

which applies to cyclic codes only, is based on “squaring ” , an

automorphism of any binary cyclic code. The second approach ,

which is applicable to any linear binary code, is based on a

“measure of reliability ” .

THE SQUARING APPROACH :

nLet Rn be the ring of polynomials modulo x -1 over GF(2).

A cyclic code C of block length n is an ideal of R~ . The

generator of C, g(x), is a divisor of x~ -l.

Let denote the permutation k -, 2k (mod n) of

10 ,l,...,n-l}. induces the “squaring ” automorphisin of

n-i . n-i 2
~

‘ a x ’) = a .x ~
‘
, a. GF(2)

i=() ~ i=O ~ 1

Since the square of a multip le of g(x) is also a multiple of

g(x), a binary cyclic code is invariant under the operation of

squaring , and moreover the square of a code word of Hamming
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weiqht w is another code word of weiqht w. The set- of all code

words obtained by squaring a code word v is called the “square

set of v” .

Let E1
,... ,E. denote the cycles of 11

2 and let v denote the

set of position indices where the code word V ~ C has ones.

Define a function f(v) = (n
1?.. .P n Q ), where = E. n v i . It

• . (43) 2is easily shown that f(v) = f(v ) for any v 6 C. A straight-

forward application of this property yields the following theorem

on Mv ? the incidence matrix of the square set of v:

Theorem :

Let

v

2

2 Cm—i)
V

be the incidence matrix of the square set of v and suppose

f ( v )  = (n1,...,n9), where n. = IE. n vj. Then the columns of

M corresponding to the components of ea.~h contain exactl y

flU)

l’ s, where m is the multiplicative order of 2 (mod n).

Example 1

Suppose n = 7. Then E1 
= [0), E2 

= (1 ,2,4), E3 = {3 ,6,5}.

Let C be the (7,6) code and v = (0,1). Then v2 = {O ,2}, V
4 

= {0 ,4
8 2 4 . .v = v and f(v) = f(v ) = f(v ) = (1 ,1,0). The incidence matrix
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of the square set of v is

0 1 2 3 4 5 6

1 1 0 0 0 0 0

M = 1 0 1 0 0 0 0
V

1 0 0 0 1 0 0

Now let C be the dual of the code we wish to decode and let

v and v ’ be code words of C with ‘1’ in the first position .

Assume f (v) = (l ,n2 ,.  .. ,n~ ) and f(v’) = (1 ,n~ ,. . . ,n ’) and that

f(v) ~ f(v ’). If it is possible to find integers a 0 and

b > 0 such that an. + bn ! < A for j = 2,... ,t, then the parity

checks of the square set of ~~~~, replicated a times , can be

combined with the parity checks of the square set of v ’, re-

plicated b times, to obtain a nonorthogonal parity check set in

which the first error position e0 is checked by all of the parity

checks, but no other position is checked by more than A parity

checks.

Example 2 (17 ,9) code

The (17,9) double-error-correcting quadratic residue code

is not L-step orthogonalizable . However , this code can be

weighted-majority decoded in one step using 15 nonorthogonal

parity checks as we now show.

For n = 17, E1 — { O },  E2 = (1,2,4,8,16,15,13,9) and

= {3 ,6 ,l2,7,l4 ,ll ,5,lO}. Two code words of weight 6 in the

(17,8) dual code for which f (v) ~ f(v ’) are:

V = (0,1,3,6,8,91 f(v) = (1,3 ,2)

v_ I = {0 ,4,5,6,7,ll} f(v ’) = (1,1,4)
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If ‘a’ is the weight (number of replications) assigned to the

square set of v and ‘b’ is the weight assigned to the square set

of v ’, then the following equations must be solved for a,b, and

A:

3a + b = A

2a + 4b =~~

The simplest solution is a = 3, b = 1, ~ = 10. There are 8

words in each square set and each word checks the first position.

Applying Ng ’s ound~
44
~ with r = 3(8) + 1(8) = 32 and ‘~ = 10, we

see t hat it is possibl e to decode th e first received bit in

spite of any pattern of t = 2 or fewer errors. This

nonorthogonal parity check set and its associated weights are

shown in Table 1. Note that since the minimum weight of any

syndrome of an error pattern with e0 = 1 is 2 greater than the

maximum weight of any syndrome of an error pattern with e0 
= 0,

the last check may be discarded , thereby reducing the number of

nonzero parity checks required to 15.

THE MEASURE OF RELIABILITY APPROAC H :

Anothe r approach to selecting a pa r i ty  check set is to

define a measure of the “reliability ” of a parity check and

then use this measure to select a subset of the 2n—k checks

available. One such measure of reliability is the absolute value

of the number of times a parity check is “right ” minus the number

of times it is “wrong” over the set of error patterns of interest ,

where we say that a parity check is “right f~ r an error pattern

e = Ce0,... ,en i ) if the check sum is equal to e0; otherwise it
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is “wrong ” . The error patterns of interest in the examples

to follow are those of weight t or less, where t is the

guaranteed er ror -cor rec t ion  capability of the code. The general

idea is to use the parity checks with the highest reliability

coefficients. When a parit~ check is “wrong ” more often than it

is “right” , we usually use the complement of the check (denoted

by a minus sign assigned to the weight) .

Word in the (17 ,8) Dual Code Assigned Weight

0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o  10

1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0  3

l l i 0 0 0 l 0 0 0 0 0 l 0 0 0 l  3

1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 10  3

1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0  3

l 0 0 0 0 0 0 0 1 1 0 l 0 O 1 0 i  3

1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1  3

1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0  3
1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0  3
l 0 0 0 l i l l 0 0 0 l 0 0 0 0 0  1

l 0 0 0 0 i O O l O l O j O l O O  1

1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1  1
l O O l O i l 0 0 0 0 0 0 0 l l O  1

1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0  1

i O O l O l O l O i O O i 0 0 0 0  1

1 1 0 0 0 0 1 1 0 0 1 0 00 1 0 0  1
l 0 l l 0 0 0 0 0 O 0 l i O ~~~ O Q  I

Table 1. Parity check set used to decode the (17,9) code

Example 3 (15,5) code

The (15,5) triple-error-correcting cyclic Reed-Muller code

can be m a j o r i t y  decoded in two steps using 42 orthogona l parity
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(22,29)checks . We now show that this code can be weighted

majority decoded in one step using 31 nonorthogonal parity checks.

The (15,10) dua l code has the following weight distribution :

Code word weight 0 4 6 8 10 12

Number of code words 1 105 280 435 168 35

The error patterns of interest in this case are the patterns of

3 or fewer errors , and the reliability coefficients of the parity

checks with respect to this set of error patterns are as given

in Table 2. The zero parity check is the most reliable , the

weight-l2 parity checks which do not check e0 are the second

most reliable , and the weight—4 parity checks which check e
0

are the third most reliable. (We use the complements of the

second set of check sums since they are “wrong ” more often than

they are “right” .) The nonorthogonal parity check set formed

from these three sets of checks and the associated weights are

shown in Table 3. (A negative weight indicates that the

complement of the check sum is to be used.) it is possible to

discard the first four nonzero checks , thereby reducing the

required number of nonzero parity checks to 31.
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Words in the  (15 ,10) Dual Code Assigned Weight

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  6
1 1 1 0 0 0 0 0 0 0 1 0 0 0 0  1
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0  1
1 1 0 0 0 1 0 0 1 0 0 0 0 0 0  1
1 1 0 0 0 0 1 0 0 0 0 0 1 0 0  1
1 1 0 0 0 0 0 0 0 1 0 0 0 0 1  1
1 1 0 0 0 0 0 0 0 0 0 1 0 1 0  1
1 0 1 1 0 0 0 0 0 0 0 0 0 1 0  1
1 0 1 0 1 1 0 0 0 0 0 0 0 0 0  1
l 0 l 0 0 0 l 0 0 0 0 0 ~~~ 0 l  1
1 0 1 0 0 0 0 1 0 0 0 1 0 0 0  1
1 0 1 0 0 0 0 0 0 1 0 0 1 0 0  1
1 0 0 1 1 0 0 0 0 1 0 0 0 0 0  1
1 0 0 1 0 1 0 0 0 0 0 0 1 0 0  1
1 0 0 1 0 0 1 0 1 0 0 0 0 0 0  1
1 0 0 1 0 0 0 0 0 0 1 1 0 0 0  1
l 0 0 0 l Q l 0 0 0 0 l 0 0 0  1
1 0 0 0 1 0 0 1 0 0 0 0 00 1  1
1 0 0 0 1 0 0 0 1 0 1 0 00 0  1
1 0 0 0 1 0 0 0 0 0 0 0 1 1 0  1
1 0 0 0 0 1 1 1 0 0 0 0 0 0 0  1
1 0 0 0 0 1 0 0 0 1 0 0 0 1 0  1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 1  1
l 0 0 0 0 0 l O O l l 0 0 0 0  1
1 0 0 0 0 0 0 1 l 0 0 0 1 0 0  1
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0  1
1 0 0 0 0 0 0 0 1 1 0 1 0 0 0  1
1 0 0 0 0 0 0 0 1 0 0 0 0 1 1  1 .
1 0 0 0 0 0 0 0 0 0 1 0 1 0 1  1
0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 —l
0 1 0 1 1 1 1 1 0 1 1 1 1 1 1  —l
0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 —l
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 —i
0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 —1
0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 —1
0 1 1 1 1 1 1 1 ~ . 1 1 0 0 1 1 —1

Table 3. Parity check set used to decode the (15,5) code

42



Section 5

CONCL.US IONS

As pointed Out in Section 2, we are now in a position to

translate all of the digital decoding algorithms of classical

algebraic coding theory into analog decoding algorithms via

the isomorphism between the additive S-domain and the multipli-

cative S’-domain. There are some enticing experiments begging

to be conducted . For example, how well would a multiplicative

BCH decoding algorithm perform when applied to an unquantized

received word? How are we to interpret such a decoding algorithm?

The very concept of BCH codes and their decoding algorithms is

based on the assumption that a digital error vector of no more

than t nonzero components has been added to the code word in

the finite-field domain of the code. From the viewpoint of

classical algebraic coding theory, it make s no sense to ta lk

about error vectors with analog components. Yet we know that a

multiplicative BCH decoding algorithm will correct some set of

error vectors. The only question is: what set? (Actually, it

is probable that a raw, unmodified multiplicative BCH decoder

would decode only those digital errors that it would have de-

coded in the additive domain , since a BCH decoder (unlike a

threshold decoder) may elect not to decode a received word . But

once in the multiplicative domain , a great many “loosening up”

modifications suggest themselves. One might consider general-

izing the idea of “root” , for instance.)
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It is also quite possible that there exists an analog de-

coding algorithm (and a new class of codes, perhaps?) which is

analogous to BCH decoding , but which is desi gned to correct only

those error vectors which fall within a continuous sphere of

Euclidean rad ius t, rather than being designed to correct only

those digital error vectors which fall within a discrete “sphere ”

of Hamming radius t. Of course, the ability to derive analog

decoding methods which are analogous to, rather than direct

translations of, classical dig ital decoding algorithms requires

an understanding of the principles of decoding in the multi-

plicative domain which we do not yet possess.

In addition to new analog decoding algorithms obtained by

direct translation of existing digital algorithms, or construct-

ed by analogy with existing digital algorithms, there is the

possibility of devising entirely new decoding methods which have

nu counterpart in classical algebraic coding theory. This

possibility stems from the new algebraic properties acquired

when we move from the classical additive domain to the multi-

plicative domain. For example , in this new domain a digital

decoding function can always be extended to an analytic function .

This means that all of the techniques of real and complex analysis

become available. One thinks immediately of hill-c limbing tech-

niques which will , with the unquantized received word as the

starting point, converge to the nearest code word. We have in

fact tried this, and our first experiment with a convergence

technique had an outcome which we should have been able to
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predict .

In the course of our work on the optimum symbol-by-symbol

decoding algorithm described in the previous section , we asked

ourselves how we could modify the algorithm to do optimum word

decoding (and thus be equivalent to correlation and Viterbi

decoding) . We designed an experiment for the white Gaussian

channel in which we fed back the unquantized output of the

optimum symbol-by-symbol decoder to the input (after the initial

processing of the unquantized received word) and then iterated

the process until it stablized . To our delight, the contents

of the fed—back decoder did indeed converge to the nearest code

word. We then became interested in the speed of convergence

and found that by “fooling ” the decoder* into thinking that the

SNR on the channel was higher than it actually was, the rate of

convergence was increased . In the end we found that by pro-

viding the decoder with a sufficiently high artificial SNR , the

nearest code word was always produced on th~ first pass. In

other words, iteration was not necessary! In retrospect , it is

obvious that this should be the case . After all , one need not

derive the SNR for correlation or Viterbi decoding , and besides,

the optimum symbol-by-symbol decoding algorithm uses all of

the available parity checks, which should have led us to suspect

*
“Fooling” the decoder consists of using art artificially high or
low SNR when computing the likelihood ratio. This has the
effect of changing the shape of the (adaptive) soft—decision
decoding function .
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that nothing further would be gained by iteration.

What this result does suggest is that there should be a

way to trade off speed of convergence and hardware comp l e x i t y .

If all of the parity checks are used , the hardware component of

complexity is maximized and the time component is minimized . If

too few parity checks are used , the decoder does not converge to

the nearest code word , and in fact may not converge to a code

word at all. Based on experience in other areas where con-

vergence techniques are widely used , we expect to find an

operating range in which the hardware and time components of

complexity can be traded off (with a further trade-off involving

error probability) , and that the optimum operating point for

most applications will involve iteration. We consider this

line of investigation to be one of the most exciting in the

period ahead. We might note here that a similar idea has been

suggested by Chase~
45
~ who plans to investigate a “cascade”

decoder (a soft-decision decoder following by a hard-decision

decoder).

In Section 3, we presented a symbol-by-symbol decoding rule

for linear codes which is optimum in the sense that it minimizes

the probability of symbol error on a time-discrete memoryless

channel when the code words are equiprobable. A comment or two

on the relationship between this technique and correlation/

Viterbi decoding would seem to be in order.

First , although the performance of correlation/Viterbi

decoding is inferior to the performance of the decoding rule

46



presented here on a symbol-error basis , and vice versa on a

word—error basis , some preliminary simulation results for the

white Gaussian channel suggest that the two approaches are very

close in performance on either basis. Symbol—error—rate is

generally considered to be a better measure of performance than

word—error-rate , especially in the case of convolutional codes ,

and this would seem to give a slight edge to the decoding rule

presented here. On the other hand , correlation/Viterbi decoding

is applicable to nonlinear as well as linear codes , which might

be an advantage in some applications. Our present feeling is

that for all practical purposes the two approaches give virtually

the same performance.

When we turn to the question of complexity , however , there

is a considerable difference between the two decoding techniques.

Correlation/Viterbi decoding is only practical for low rate or

short codes whereas the symbol-by-symbo l decoding rule is only

practical for high rate or short linear codes. We are fairly

well convinced , and the reader may be able to convince himself

by studying the examples in Section 3.2 , that the complexity of

the symbol—by-symbol decoding rule for an (n,k) linear code is

comparable to the complexity of a correlation/Viterbi decoder

for the (n ,n-k) dual code. This is fairly easy to see in the

case of linear block codes, but not so obvious in the case of

convolutiona l codes since there are so many options and pro-

gramming tricks to be considered . The authors, however , are

firm believers in the coding-complexity Folk Theorem : “The
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complexity of any function defined on a linear code is com-

parable to the complexity of (essentially) that same function

defined on the dua l code” . (In fact , it was the unsatisfying

lack of a sof t  decision decoding method for  high rate l inear

codes that was “dual” to correlation/Viterbi decoding that

motivated the research reported here.) If our intuition is

correct , then the symbol-by-symbol decoding rule and correlation/

Viterbi  decoding should be of comparable complexity for rate 1/2

codes. We remark that the decoding rule for linear codes over

GF(p) can be general ized in a stra igh t f or wa rd fashion to linear

codes over GF(Pm) by using the generalized finite Fourier trans-

for~n of [46 , pg. 367].

For very high SNR, the asyn~ptotic expression for bit error

probability derived in Section 3.3 is the same whether optimum

bit-by-bit decoding or maximum-likelihood word decoding

(i.e. correlation) is used. The reason for this is easily seen

intuitively. For 
~b 

-

~ 
~~ with high probability the only time

a decoding error occurs using either scheme is when the received

word lies very nearly on a straight line between the trans-

mitted code word and a “nearest ne ighbor ” code word, slightly

closer to the neighbor. In either case, the pattern of errors

coincides with the positions in which the transmitted code word

and the neighbor differ. This result tends to support the

conjecture~
13

~ that correlation decoding and optimum symbol—

by-symbol decoding give , for all practical purposes , the same



performance on discrete inemoryless channels.

Finally, we conjecture that the one-step weighted majority

decoders for the (17,9) and (15 ,5) codes derived in Section 4

to illustrate the two parity set construction methods are in

fact minimal decoders in the sense that they use the fewest

possible parity checks for t-error-correction. It is interesting

to note: (I) that in the (17,9) decoder, parity checks of equal

reliability are assigned different weights, and (2) that it is

apparently necessary to use the complements of consistently

“wrong ” parity check sums to obtain a minimal decoder for the

(15,5) code. It is our feeling , however , that these are “quirks”

related to digital t—error—correction , and would probably not

carry over to soft-decision decoding .
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METRIC SYSTEM

lASt UNITS:
Quant~!y 

I Jnit SI Symbol Form~ila

length metre m -
mass kilogram kg
time second $

elec tric curt$O t ampere A
thermodynamic temperature kelvin K
amount of aut*t.nc. mole mol
luminous intensity candela cd

SIJPPLD4D4TA*Y UNITS :
plane angle radian rid
solid angle ster adian

DEJ IVID UNITS:
Acceleration metre per second squared mis

act ivity lof • radioactive sourte) dis int egrat ion per second fdtsrn tegrs tton h/S
angu lar accelera tion radian per second squired rad/i
angu lar velocity radian per second radi i
area squire metr e rn

density ki logram per cubic metr e kg/rn
elec trn capacit ance fa rad I- A.s/V
electrical con duc tance s iemens S AN
electric field strength volt per metre Vim

electric inductance henry H V .a/A
ele tric potentia l diffe rence volt V W/A
electric resistance ohm V/A
electromoti~se force volt V W/A
energy joule I N.m

entropy joule per kelvin . .  )/K

fo rce newton N kg.mls
frequency her tz Hz (cycle)/s

illuminance lux l x lm/m

luminance candela per square metre cdlm

luminous flux lumen Im cd.ir

magnetic fie ld strength ampere per metre Aim
magnet ic flux weber Wb V s

magnetic flux dens ity teals I Wb~m
magnetomot ive force ampere A
power watt W Is
pres sure pascal Pa N/rn
quantity of electricity coulomb C A..

quantity of best joule I N.m

radiant intensity watt per ste rad ien W~sr

speuf i heat joule per ki logram -kelvin ~Ikg .P(

stress pascal Pa N/rn

t hermal conductivity watt per metre-kelvin W/m.K

velocity metre per second mis

viscosity, dynamic pascaJ.second Pa..
viscosity, kinematic square metre per second m/s
vo ltage volt V WA
volume cubic metre m

wavenumbar reciprocal metre (wsve)lm

work joule I N.m

SI PIU~~ES:

- 
Multip lica tion Factors Prefix SI Symbo l

000 ooo ooo 000 = 10” tars

I 000 000 000 = 10’ giga (;
1 000 000=l0~ 

meg. M

1 000~~ I0~ kilo k
100 10’ hecto~ h

10 - 10’ deka di
0.1 10~~ 

decr d
001 1 0 ’  :entr c

000 1 1 0 ’  mil k m
1) 0(1(1001 — 10 ~ micro

0 00(1 (MX) 001 10 ’ nano fl

0.000 000 (XX) 001 • 1 0 ”  p1(x)
(1 000 000 000 000 001 1 0 ”  femto

0.000 000 000 000 000 001 1 0 _ I  5

To be avoided wb re possible .,j~ Govesseser peeflieG o,p,cs i,~,-,,,-re, is.
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Rome Air Development Center

R*X plans and conducts researc h .xplar*tOry and advanced

d,velojawt progra in c o a~d, control. and cc~~uraicatiOfla
(C3) activitisa, and in the C3 areas of infozttat.iori sciexacet

and ix,t.llig.ice. The principal tecM.t cal elation ar as
are co znicatfona, .l.ctrcmagnstic gu.idmnoe and control,

surveillance of ground end aar osp ac Objects, lntslligWce
data collection and Mradling, inf ormation syst technology,
ic.j o,ph.zic p r  agat.lon, solid stat. acianCIL mLcrOmaV~
p~iyiica and .l.ctrcrsic reliability, maintainability and
comp atibility.
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